♦ Water

Water is a key raw material for the manufacture of ammonia which is the key component of our explosives and fertiliser products. Within our ammonia plants, the majority of water use is for cooling during the manufacturing process. A small percentage is used for steam to power equipment and as an input for the chemical reaction that makes ammonia. The risks and opportunities associated with water management as it relates to climate change have been assessed and are described in our annual Carbon Disclosure Water Project submission.

While the majority of IPL's manufacturing plants are located in regions with plentiful natural supplies of water, some of our Australian sites and one in the South West of the United States operate in regions where water conservation is a critical issue. In other regions, where there is higher rainfall, we recognise that water management is also important.

Water use by source

During 2015, we used 40,172 mega-litres (ML), which is 3 percent less than last year. Our total reported water use includes the categories shown on the right. A large proportion of this water is used more than once within our plants, but most sites do not meter this recycling of water. 348ML of water was recycled and reused at sites which have meters. This represents  1 percent of our total water use. 

Water discharge by destination

During 2015 we discharged 32,075,547 m3 of water to the environment, approximately the same as last year. This total discharge excludes sewage, discharge of collected rainwater and waste water removed for treatment or disposal as liquid waste (which are included under ‘Waste’). As shown in the graph, most of this water was clean cooling water which was discharged to the natural waterways from which it was taken, reducing our net water use to 9,059 ML, which is a 7% reduction on last year's water usage. We monitor the water quality of such discharges on an ongoing basis to meet local regulatory requirements and also seek to improve water quality beyond the standards required by licensing wherever possible.

Improving our performance

Continuous improvements this year include:

• At Moranbah, Australia, a new initiative to re-process storm water through the recycle train of the onsite Water Treatment Plant reclaimed 95,146 kL of waste water for reuse.

• At Simsbury, USA, a third steam trap audit was completed this year, identifying leaks and reducing both water and energy use.

• a mobile reverse osmosis unit reclaimed 68,000 kilolitres (kL) of waste water for reuse in the


cooling towers at our Cheyenne, Wyoming, USA site.

• At our Carthage, USA, site the installation of electric motor driven pumps to replace hydraulic pumps is being investigated. This will reduce water use at the site by 4,000 kL per year and also reduce waste water by this amount. 

• 199,759 kL of water was recovered from waste gypsum stockpiles at our Phosphate Hill, Australia, site, also recovering valuable phosphate for use in our fertiliser products, and we have set a water reduction target for this site.


In addition to IPL’s comprehensive annual risk management process, the WBCSD Global Water Tool is completed each year for long term projections and reviewed by the Chief Risk Officer. This analysis is used to identify sites at which water is a material issue.

The tool has identified one ammonia manufacturing site in the United States where baseline water stress in the water catchment area is high. It has also identified one ammonia manufacturing site and several smaller manufacturing sites in Australia as being located in water catchment areas areas which may experience water stress in the future (2025). Water supplies and management strategies at these sites are discussed below. 

♦ Cheyenne: Wyoming, USA

At our ammonia manufacturing site at Laramie County, Cheyenne, Wyoming, USA, water resources are of particular concern and management involves multiple stakeholders. Located in a semi-arid area, water for the site is drawn from an underground aquifer which is recharged each year by precipitation, including snowmelt. We engage with key stakeholders including the Wyoming State Engineer’s Office (SEO) which manages stakeholder access to the aquifer and maintains databases for ground water levels,  along with the Ground Water Division of the U.S. Geological Survey, and our Cheyenne site monitors wells through totalizing flowmeters and water level measurements and reports to the SEO annually. Water saving initiatives at the site include:

• The monitoring and maintenance of steam traps and condensate systems to reduce water loss 

• Operation of a brine concentrator unit which recycles approximately 100 gallons of water per minute

• Operation of a mobile reverse osmosis unit, reclaiming 75,000 kL of waste water for reuse in 2015

• Communication to personnel through daily reports to watch for and prevent excess water from running

• Visual management board for water reduction projects and efforts

• The creation of the position of Focused Improvement Engineer in 2015 to focus specifically on water reduction opportunities. 

 Phosphate Hill: Queensland, Australia

Located in the Georgina Basin, IPL’s Phosphate Hill site in remote North West Queensland manufactures ammonium phosphate fertilisers, which requires large volumes of high quality cooling water. In addition to its ammonia, rock processing, phosphoric acid and granulation plants, Phosphate Hill has its own phosphate mine, ore processing facility and, due to its remote location, its own gas fired power plant, reverse osmosis water treatment plant and employee accommodation village. The WBCSD Water tool identifies this site as being in an area which may experience water stress in the future (2025) due to the high inter-annual variability of rainfall. To ensure supply, groundwater is drawn under licence from the phosphate orebody, which is porous and contains an aquifer called the Duchess Embayment Aquifer (DEA). 

The many aquifers in the Georgina Basin are naturally recharged by rainfall during the summer wet season and were identified as a renewable (annually replenished) groundwater resource with high groundwater development potential (over 100GL/yr) by a recent inquiry into the development of northern Australia by the CSIRO. Although wet season rainfall over the last several years in the DEA has been lower than the long term average, ongoing model prediction and quarterly monitoring conducted using 39 monitoring bores across the embayment indicate that adequate supply to the site is currently being maintained. In addition to monitoring for potential changes in the embayment, the Phosphate Hill site submits an annual Borefield Performance Report to the Queensland Government Department of Natural Resources and Mines (DNRM) each year in September and completes an Annual Aquifer Review in December each year. 

Our Phosphate Hill site is committed to reducing water usage wherever possible through continuous improvements and water recycling strategies. These presently include multiple re-uses of cooling water (our major use), reclamation of water from waste gypsum stacks and a reduction in mine dewatering, a process to remove water so that the phosphate ore body can be accessed. This last initiative is expected to reduce total water extraction from the aquifer by 20% in 2016. In addition, a third party specialist was commissioned to complete a Water Balance Study for the site this year, which has initiated a project to identify specific actions to reduce water use at the site by 5% each commencing in 2016. 

♦ Geelong: Victoria, Australia

The Geelong site manufactures single super phosphate fertilisers, a process which requires much less water than ammonia manufacture. However, the site has been identified by the WBCSD Water Tool as being in a water catchment area which may experience water stress in the future (2025). The site obtains its water from the state government managed Barwon Region Water Corporation, Victoria's largest regional urban water management body. Barwon water is predominantly sourced from forested catchments on the upper Barwon and Moorabool rivers, but during periods of prolonged drought water is sourced from underground aquifers via the Barwon Downs and Anglesea bore fields. In extreme drought, the water management body can also access supply from the water grid of the City of Melbourne via the Melbourne to Geelong Pipeline, a 59-kilometre underground pipeline which is part of the state’s long-term plan to secure the region's water supply into the future. Water saving strategies at the site include the on-site capture, treatment and reuse of large volumes of stormwater, with 41,326 kL being treated and re-used this year. A septic system designed to recycle grey water is being installed in 2016 at the new Product Distribution Centre, also in Geelong. 

 Mt Isa: Queensland, Australia

With an estimated population of 22,013 as at June 2014, the mining town of Mount Isa is the administrative, commercial and industrial centre for the state's vast north-western region. Our Mt Isa site manufactures sulphuric acid using waste sulphur obtained from a nearby metal ore mine. This process also uses less water than ammonia manufacture, however steam is also used at the site in the process of generating electricity from waste heat captured from the sulphuric acid making process. Water for the site is obtained through the Mount Isa Water Board which is responsible for the sustainable management of water supplies in the region. Although identified by the WBCSD Water Tool as being located in an arid area which may experience water stress in the future (2025), the Water Board manages supply using two man-made Lakes. Water is drawn mostly from Lake Moondarra (owned by a metal ore mining company, but transported by the Mt Isa Water Board) 13 kilometres downstream of Mt Isa, and pumped 60km up from Lake Julius in times of extreme drought to ensure supply is maintained. Water saving strategies at the site include the condensing of all steam used in our on-site electricity generation turbine and the returning of any blow down water from our cooling towers to the nearby metal ore mine as process water. 

Bajool: Queensland, Australia

Our site at Bajool, Australia, manufactures explosives emulsions. Although identified by the WBCSD Water Tool as being in a water catchment area which may experience water stress in the future (2025), water supply is not considered a material issue at this site due to the low water usage required for emulsion manufacturing processes. Drinking water is delivered in bottles and all other water for the site, including amenities, is drawn from a small on-site bore under licence granted by the Queensland State Government.